

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

Department of Electronics and Communication Engineering

Program: M.Tech - VLSI-Design

Regulation:	R16 <u>Course Outcomes</u> No. of Courses: 23
I-I Sem	Course: Digital System Design
CO-1	Understand the basic Physics and Modelling of MOSFETs.
CO-2	Learn the basics of Fabrication and Layout of CMOS Integrated Circuits.
CO-3	Study and analyze the performance of CMOS Inverter circuits on the basis of their operation and working.
CO-4	Study the Static CMOS Logic Elements.
CO-5	Study the Dynamic Logic Circuit Concepts and CMOS Dynamic Logic Families.
I-I Sem	Course:VLSI Technology and Design
CO-1	Understand the basic theory of MOS Transistors, basic steps of fabrication. Learn the basic theory of Crystal growth and preparation.
CO-2	Understand the uses of formation and process of silicon dioxide growth, all important Tube furnaces. To learn different types oxidation such as Chemical vapor Deposition, and LPCVD of poly silicon. Oxidation, Kinetics of oxidation
CO-3	Understand the series of processes that establishes the shapes, dimensions and placement of required physical components of IC on the wafer surface layer, understands different types lithography.
CO-4	Learn formation of specific "Pockets" of conductive region and N-P in and on the wafer surface, understands the principles and practice of the two doping techniques, diffusion and ion implantation.
CO-5	Understand the effect of contaminations on device processing, device performance.
I-I Sem	Course: CMOS Analog IC Design
CO-1	Apply knowledge of mathematics, science, and engineering to design and analysis of analog integrated circuits.
CO-2	Identify, formulates, and solves engineering problems in the area of analog integrated circuits.
CO-3	Use the techniques, skills, and modern programming tools such as Mentor Graphics, necessary for engineering practice.
CO-4	Participate and function within multi-disciplinary teams.
CO-5	Design a various stages of Operational amplifiers using CMOS devices.
I-I Sem	Course: CMOS Digital IC Design

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

CO-1	Identify the various IC fabrication methods.
CO-2	Express the Layout of simple MOS circuit using Lambda based design rules.
CO-3	Apply the Lambda based design rules for subsystem design.
CO-4	Differentiate various FPGA architectures.
CO-5	Design an application using Verilog HDL.
I-I Sem	Course: Digital Design using HDL (Elective-I)
CO-1	Understand the language constructs and programming fundamentals of Verilog HDL.
CO-2	Choose the suitable abstraction level for a particular digital design.
CO-3	Construct Combinational and sequential circuits in different modelling styles using Verilog HDL.
CO-4	Analyse and Verify the functionality of digital circuits/systems using test benches.
CO-5	Understand the difference between simulation and synthesis environments.
I-I Sem	Course: Advanced Operating Systems (Elective –I)
CO-1	List the principles of distributed systems and describe the problems and challenges associated with these principles.
CO-2	Understand Distributed Computing techniques, Synchronous and Processes. Apply Distributed web-based system.
CO-3	Apply Shared Data access and Files concepts.
CO-4	Design a distributed system that fulfills requirements with regards to key distributed systems properties.
CO-5	Understand Distributed File Systems and Distributed Shared Memory.
I-I Sem	Course: Soft Computing Techniques (Elective –I)
CO-1	Develop intelligent systems leveraging the paradigm of soft computing techniques.
CO-2	Implement, evaluate and compare solutions by various soft computing approaches for finding the optimal solutions.
CO-3	Recognize the feasibility of applying a soft computing methodology for a particular problem
CO-4	Design the methodology to solve optimization problems using fuzzy logic, genetic algorithms and neural networks.
CO-5	Design hybrid system to revise the principles of soft computing in various applications
	A CONTRACT OF ENGINEERING

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

I-I Sem	Course: Cyber Security (Elective –I)
CO-1	Analyze and evaluate the cyber security needs of an organization.
CO-2	Determine and analyze software vulnerabilities and security solutions to reduce the risk of exploitation.
CO-3	Measure the performance and troubleshoot cyber security systems.
CO-4	Implement cyber security solutions and use of cyber security, information assurance and cyber/computer forensics software/tools.
CO-5	Comprehend and execute risk management processes, risk treatment methods, an key risk and performance indicators.
I-I Sem	Course: CPLD and FPGA Architectures and Applications (Elective –II)
CO-1	Gain the knowledge about PLDs, FPGA Design & architectures.
CO-2	Understand different types of arrays.
CO-3	Learn FSM and different FSM techniques like petrinets, and different case studies.
CO-4	Study different case studies using one hot design methods.
CO-5	Familiarize various complex programmable Logic devices of different families.
I-I Sem	Course: Advanced Computer Architecture (Elective –II)
CO-1	Demonstrate concepts of parallelism in hardware/software.
CO-2	Discuss memory organization and mapping techniques.
CO-3	Describe architectural features of advanced processors.
CO-4	Interpret performance of different pipelined processors.
CO-5	Explain data flow in arithmetic algorithms.
I-I Sem	Course: Hardware Software Co-Design (Elective –II)
CO-1	Apply knowledge of mathematics, science, and engineering to computer engineerin
CO-2	Design and conduct computer engineering experiments, as well as to analyze an interpret data.
CO-3	Design a system, component, or process to meet desired needs.
CO-4	Identify, formulate, and solve electrical computer problems
CO-5	Use the techniques, skills, and modern engineering tools necessary for compute engineering practice.
	USE OUCHANDING ON CONTRACT

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

I-I Sem	Course: Front end VLSI Design Lab
CO-1	Understand the physical design process of Digital Integrated Circuits.
CO-2	Describe procedure for designing of programmable circuits.
CO-3	Demonstrate the ability to use various EDA tools for digital system design.
I-II Sem	Course: VCMOS Mixed Signal Circuit Design
CO-1	Present scenario presence mixed signal circuits because commercial and industria application based on same.
CO-2	Learn communication systems and digital processing mixed circuit being used.
CO-3	Use RF IC design mixed signal circuit in highly appreciable.
CO-4	Understand VLSI, based on Mixed signal circuits.
CO-5	Apply Software for CAD in VLSI based on mixed signal circuits deign.
I-II Sem	Course: Embedded System Design
CO-1	Acquire a basic knowledge about fundamentals of microcontrollers.
CO-2	Acquire a basic knowledge about programming and system control to perform specific task.
CO-3	Acquire knowledge about devices and buses used in embedded networking
CO-4	Develop programming skills in embedded systems for various applications.
CO-5	Acquire knowledge about basic concepts of circuit emulators.
I-II Sem	Course: Low Power VLSI Design
CO-1	Introduce low power VLSI design-Need for low power-CMOS leakage currentstatic
CO-2	Deal with Pre-computation logic
CO-3	Discuss Power reduction in clock networks- CMOS floating node- low power busdelay balancing- SRAM.
CO-4	Understand Algorithm and architectural level methodologies- Introduction, desig flow
CO-5	Discuss different type deign style.
I-II Sem	Course: Design For Testability
CO-1	Give knowledge about testing process at IC level with their functions and relations.
CO-2	Introduce the major concepts of all test techniques such as redundancy, fau coverage, sensitization and backtracking.

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

CO-3	Discuss test generation for combinational and sequential circuits both it examines in detail various techniques available for fault detection.
CO-4	Deal with test generation and response evaluation techniques used in built-in-self test (BIST) Schemes for VLSI chips some popular BIST architectures are examined.
CO-5	Discuss the fundamental of fault detection and also introduces the concept of controllability, observably and fault equivalency.

I-II Sem	Course: CAD for VLSI(Elective – III)
CO-1	Demonstrate knowledge and understanding of fundamental concepts, Graph Theory.
CO-2	Demonstrate knowledge of computational and optimization algorithms and tools.
CO-3	To solve CAD related problems.
CO-4	Establish capability for CAD tool development and enhancement.
CO-5	Get the Overview of Physical Design of VLSI ICs .

I-II Sem	Course: DSP Processors & Architectures(Elective –III)
CO-1	To distinguish between the architectural features of general purpose processors and DSP processors.
CO-2	Understand the architectures of TMS 320C54XX and ADSP2100 DSP devices.
CO-3	Write assembly language programs using instruction set of TMS320C54XX.
CO-4	Learn Interface of various devices to DSP Processors.
CO-5	Develop the programming knowledge using Instruction set of DSP Processors.

I-II Sem	Course: VLSI Signal Processing(Elective-III)
CO-1	To learn performance optimization techniques in VLSI signal processing.
CO-2	Transformations for high speed and power reduction using pipelining, retiming, parallel processing techniques, supply voltage reduction as well as for strength or capacitance reduction.
CO-3	Area reduction using folding techniques, Strategies for arithmetic implementation.
CO-4	Synchronous, wave, and asynchronous pipelining.
CO-5	Illustrate digital signals, systems and their significance.
I-II Sem	Course: System on Chip Design(Elective – IV)
CO-1	Understand SoC Design Methodology

CO-2 Understand the design of different embedded memories

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

the second se	
CO-3	Validation and Testing Concepts can be understood.
CO-4	Investigate new techniques for future system
CO-5	Understand the concepts of System on Chip Design Validation
I-II Sem	Course: Optimization Techniques in VLSI Design(Elective – IV)
CO-1	Learn the basics of MOS and CMOS technologies.
CO-2	Design combinational logic circuits using MOS and CMOS technologies and develop stick and layout diagrams with design rules.
CO-3	Calculate equivalent resistances and capacitances of circuits and estimate power consumption and delay.
CO-4	Use Switch logic or Gate logic in their design projects.
CO-5	Design the Combinational and Sequential circuits by using VHDL Language.
I-II Sem	Course: Semiconductor Memory Design and Testing(Elective – IV)
ĊO-1	Analyse the different RAM and ROM architecture and interconnects.
CO-2	Analyse about design and characterization technique.
CO-3	Analyse different memory testing and design for testability.
CO-4	Identify new developments in semiconductor memory design.
CO-5	Comprehend the low power design techniques and methodologies.
I-II Sem	Course: Back end VLSI Design Lab
CO-1	Design CMOS logic circuits.
CO-2	Simulate circuits within a CAD tool and compare to design specifications.
CO-3	Analyze the results of logic and timing simulations and to use these simulation results to debug digital systems.

AVANTHI INSTITUTE OF ENGG. & TECH. Cherukupally (V), Near Tagarapuvalasa Bridge Bhogapuram (M), Vizianagaram (D)-531162