(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

Department of Electrical and Electronics Engineering

Program: B.Tech- Electrical and Electronics Engineering

Regulation:	R20 Course Outcomes No. of Courses: 77
I-I Sem	Course: Communicative English
CO-1	understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
CO-2	ask and answer general questions on familiar topics and introduce oneself/others
CO-3	employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
CO-4	recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
CO-5	form sentences using proper grammatical structures and correct word forms
I-I Sem	Course: Mathematics-I
CO-1	utilize mean value theorems to real life problems
CO-2	solve the differential equations related to various engineering fields
CO-3	familiarize with functions of several variables which is useful in optimization
CO-4	apply double integration techniques in evaluating areas bounded by region
CO-5	Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems
I-I Sem	Course: Mathematics-II
CO-1	develop the use of matrix algebra techniques that is needed by engineers for practical applications
CO-2	solve system of linear algebraic equations using Gauss elimination, Gauss Jordan Gauss Seidel
CO-3	evaluate the approximate roots of polynomial and transcendental equations by different algorithms
CO-4	apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals
CO-5	apply numerical integral techniques to different Engineering problems
I-I Sem	Course: Programming For Problem Solving Using C
CO-1	To write algorithms and to draw flowcharts for solving problems
CO-2	To convert flowcharts/algorithms to C Programs, compile and debug programs
CO-3	To use different operators, data types and write programs that use two-way/ multi- way selection

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

CO-4	To select the best loop construct for a given problem
CO-5	To design and implement programs to analyze the different pointer applications
I-I Sem	Course: Electrical Engineering Workshop
CO-1	Explain the limitations, tolerances, safety aspects of electrical systems and wiring.
CO-2	Select wires/cables and other accessories used in different types of wiring.
CO-3	Make simple lighting and power circuits.
I-I Sem	Course: Programming For Problem Solving Using C Lab
CO-1	Gains Knowledge on various concepts of a C language.
CO-2	Draw flowcharts and write algorithms.
CO-3	Design and development of C problem solving skills
I-II Sem	Course: Mathematics-III
CO-1	interpret the physical meaning of different operators such as gradient, curl and divergence
CO-2	estimate the work done against a field, circulation and flux using vector calculus
CO-3	apply the Laplace transform for solving differential equations
CO-4	□ find or compute the Fourier series of periodic signals
CO-5	know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms
I-II Sem	Course: Applied Physics
CO-1	Explain the need of coherent sources and the conditions for sustained interference
CO-2	Understand the basic concepts of LASER light Sources
CO-3	Explain the concept of dual nature of matter
CO-4	Explain the concept of dielectric constant and polarization in dielectric materials
CO-5	Classify the energy bands of semiconductors
I-II Sem	Course: Data Structures Through C
CO-1	Data structures concepts with arrays, stacks, queues.

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-2	Linked lists for stacks, queues and for other applications.
CO-3	Traversal methods in the Trees.
CO-4	Various algorithms available for the graphs.
CO-5	Sorting and searching in the data ret retrieval applications.
I-II Sem	Course: Electrical Ciruit Analysis – I
CO-1	AnalyzeVarious electrical networks in presence of active and passive elements
CO-2	Calculate Electrical networks with network topology concepts.
CO-3	Calculate Any magnetic circuit with various dot conventions
CO-4	Calculate Any R, L, C network with sinusoidal excitation
CO-5	Calculate Any R, L, network with variation of any one of the parameters R, L, C. and f.
I-II Sem	Course: Basic Civil And Mechanical Engineering
CO-1	Apply Shear force diagram & Bending moment diagram principles for
CO-2	Cantilever and Simply supported beams.
CO-3	Apply concepts of Rosette analysis for strain measurements.
CO-4	Analyse the characteristics of common building materials.
CO-5	Compare the working characteristics of Internal Combustion engines.
I-II Sem	Course: Basic Civil And Mechanical Engineering Lab
CO-1	Solve to arrive at finding constant speed and variable speed on IC engines and interpret their performance.
CO-2	Estimate energy distribution by conducting heat balance test on IC
CO-3	Explain procedure for standardization of experiments
I-II Sem	Course: Data Structures Through C Lab
CO-1	Be able to design and analyze the time and space efficiency of the data structure.
CO-2	Be capable to identity the appropriate data structure for given problem.
CO-3	Have practical knowledge on the applications of data structures.
	OF ENGINEERS

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram) NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

I-II Sem	Course: Constitution Of India
CO-1	Understand historical background of the constitution making and its importance for building a democratic India.
CO-2	Understand the functioning of three wings of the government i.e., executive, Legislative and judiciary.
CO-3	Understand the value of the fundamental rights and duties for becoming good citizen of India.
CO-4	Analyze the decentralization of power between central, state and local self government.
CO-5	Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
II-I Sem	Course: Mathematics-IV
CO-1	apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic
CO-2	find the differentiation and integration of complex functions used in engineering problems
CO-3	make use of the Cauchy residue theorem to evaluate certain integrals
CO-4	apply discrete and continuous probability distributions
CO-5	design the components of a classical hypothesis test
II-I Sem	Course: Electronic Devices And Circuits
CO-1	Understand the basic concepts of semiconductor physics.
CO-2	Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation.
CO-3	Know the construction, working principle of rectifiers with and without filters with Relevant expressions and necessary comparisons.
CO-4	Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations.
CO-5	Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions.
II-I Sem	Course: Electrical Circuit Analysis - II
CO-1	Understand the concepts of balanced and unbalanced three-phase circuits
CO-2	Know the transient behavior of electrical networks with DC excitations
CO-3	Learn the transient behavior of electrical networks with AC excitations
CO-4	Estimate various parameters of a two port network
CO-5	Understand the significance of filters in electrical networks

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

II-I Sem	Course: DC Machines and Transformers
	Assimilate the concepts of electromechanical energy conversion
CO-1	Mitigate the ill-effects of armature reaction and improve commutation in dc machines.
CO-2	Understand the torque production mechanism and control the speed of dc motors.
CO-3	Analyze the performance of single phase transformers.
CO-4	Predetermine regulation, losses and efficiency of single phase transformers
CO-5	Parallel transformers, control voltages with tap changing methods and achieve three-phase to two-phase transformation
II-I Sem	Course: Electromagnetic Fields
CO-1	Determine electric fields and potentialsusing guass's lawor solving Laplace's or Possion's equations, for various electric charge distributions.
CO-2	Calculate and design capacitance, energy stored in dielectrics.
CO-3	Calculate the magnetic field intensity due to current, the application of ampere's law and the Maxwell's second and third equations.
CO-4	Determine the magnetic forces and torque produced by currents in magnetic field
CO-5	Determine self and mutual inductances and the energy stored in the magnetic field.
II-I Sem	Course: Electrical Circuits Lab
CO-1	Apply various thermos, determination of self and mutual inductances, two port parameters of a given electric circuits.
CO-2	Draw locus diagrams. Waveforms and phasor diagram for lagging and leading networks.
CO-3	Two port parameters of a given electric circuits
II-I Sem	Course: DC Machines and Transformers Lab
CO-1	Determine and predetermine the performance of DC machines and Transformers.
CO-2	Control the speed of DC motor.□
CO-3	Obtain three phases to two phase transformation.
II-I Sem	Course: Electronic Devices And Circuits Lab
CO-1	Analyze the characteristics of diodes, transistors and other devices

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-2	Design and implement the rectifier circuits, SCR and UJT in the hardware circuits
CO-3	Design the biasing and amplifiers of BJT and FET amplifiers
II-I Sem	Course: Skill Oriented Course - Design Of Electrical Circuits Using Engineering Software Tools
CO-1	write the MATLAB programs to simulate the electrical circuit problems
CO-2	simulate various circuits for electrical parameters
CO-3	simulate various wave form for determination of wave form parameters
CO-4	□ simulate RLC series and parallel resonance circuits for resonant parameters
CO-5	simulate magnetic circuits for determination of self and mutual inductances
II-I Sem	Course: Professional Ethics & Human Values
CO-1	Identify and analyze an ethical issue in the subject matter under investigation or in a relevant field
CO-2	Identify the multiple ethical interests at stake in a real-world situation or practice
CO-3	Articulate what makes a particular course of action ethically defensible
CO-4	Assess their own ethical values and the social context of problems
CO-5	Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of
II II Same	
II-II Sem	Course: Induction and Synchronous Machines
CO-1	Explain the operation and performance of three phase induction motor. Analyze the torque-speed relation, performance of induction motor and induction
CO-2	generator.
CO-3	Explain design procedure for transformers and three phase induction motors
CO-4	Implement the starting of single phase induction motors.
CO-5	Perform winding design and predetermine the regulation of synchronous Generators.
II-II Sem	Course: Python Programming
CO-1	Develop essential programming skills in computer programming concepts like data types, containers
CO-2	Apply the basics of programming in the Python language Solve coding tasks related
CO-3	Conditional execution, loops

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-4	Solve coding tasks related to the fundamental notions and techniques used in object- oriented programming
CO-5	Understand the concepts of inheritance and polymorphismfor code reusability and extensibility.
II-II Sem	Course: Digital electronics
CO-1	Classify different number systems and apply to generate various codes.
CO-2	Use the concept of Boolean algebra in minimization of switching functions
CO-3	Design different types of combinational logic circuits
CO-4	Apply knowledge of flip-flops in designing of Registers and counters
CO-5	The operation and design methodology for synchronous sequential circuits and Algorithmic state machines.
II-II Sem	Course: Power Systems-I
CO-1	Identify the different components of thermal power plants.
CO-2	Identify the different components of nuclear Power plants.
CO-3	Distinguish between AC/DC distribution systems and also estimate voltage drops of distribution systems.
CO-4	Identify the different components of air and gas insulated Substations.
CO-5	Identify single core and multi core cables with different insulating materials
II-II Sem	Course: Managerial Economics and Financial Analysis
CO-1	Equipped with the knowledge of estimating the Demand and demand Elasticities for a product.
CO-2	Knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.
CO-3	Understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units
CO-4	Prepare Financial Statements and the usage of various Accounting tools for Analysis.
CO-5	Evaluate various investment project proposals with the help of capital budgeting techniques for decision making.
II-II Sem	Course: Induction and Synchronous Machines Lab
CO-1	Assess the performance of single phase and three phase induction motors
CO-2	Control the speed of three phase induction motor

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-3	Predetermine the regulation of three-phase alternator by various methods
II-II Sem	Course: Python Programming Lab
CO-1	Write, Test and Debug Python Programs
CO-2	Use Conditionals and Loops for Python Programs
CO-3	Use functions and represent Compound data using Lists, Tuples and
II-II Sem	Course: Digital electronics Lab
CO-1	Learn the basics of gates, filp-flops and counters
CO-2	Construct basic combinational circuits and verify their functionalities
CO-3	Apply the design procedures to design basic sequential circuits
III-I Sem	Course: Power Systems-II
CO-1	Understand parameters of various types of transmission lines during different operating conditions.
CO-2	Understand the performance of short and medium transmission lines.
CO-3	Understand travelling waves on transmission lines.
CO-4	Understand various factors related to charged transmission lines.
CO-5	Understand sag/tension of transmission lines and performance of line insulators.
III-I Sem	Course: Control Systems
CO-1	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.
CO-2	Determine time response specifications of second order systems and absolute and relative stability of LTI systems using Routh's stability criterion and root locus method.
CO-3	Analyze the stability of LTI systems using frequency response methods
CO-4	Design Lag, Lead, Lag-Lead compensators to improve system performance using Bode diagrams
CO-5	Represent physical systems as state models and determine the response. Understand the concepts of controllability and observability.
III-I Sem	Course: Renewable Energy Sources
CO-1	Analyze solar radiation data, extra-terrestrial radiation, radiation on earth's surface and solar Energy Storage.

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-2	Illustrate the components of wind energy systems
CO-3	Illustrate the working of biomass, digesters and Geothermal plants.
CO-4	Demonstrate the principle of Energy production from OTEC, Tidal and Waves
CO-5	Evaluate the concept and working of Fuel cells & MHD power generation
III-I Sem	Course: Concepts of Optimization Techniques
CO-1	State and formulate the optimization problem without and with constraints, also apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints and arrive at an optimal solution
CO-2	Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
CO-3	Formulate a mathematical model and apply non-linear programming techniques for unconstrained and constrained case studies.
CO-4	Solve transportation and assignment problem by using Linear programming Simplex method
CO-5	Formulate and apply Dynamic programming technique to inventory control, production planning, engineering design problems etc. to reach a final optimal solution from the current optimal solution.
III-I Sem	Course: Power Electronics
CO-1	Explain the characteristics of various power semiconductor devices and analyze the static and dynamic characteristics of SCR's.
CO-2	Design firing circuits for SCR.
CO-3	Explain the operation of single phase full-wave converters and analyze harmonics in the input current.
CO-4	Explain the operation of three phase full-wave converters.
CO-5	Analyze the operation of different types of DC-DC converters
III-I Sem	Course: Concepts of Control Systems
III-I Sem CO-1	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs.
	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs. Determine time response specifications of second order systems and to determine error constants.
CO-1	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs. Determine time response specifications of second order systems and to determine error constants.
CO-1 CO-2	Derive the transfer function of physical systems and determination of overall transfer function using block diagram algebra and signal flow graphs. Determine time response specifications of second order systems and to determine error constants. Analyze absolute and relative stability of LTI systems using Routh's stability

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B+++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

III-I Sem	Course: Linear IC Applications
CO-1	Describe the Op-Amp and internal Circuitry: 555 Timer, PLL
CO-2	Discuss the Applications of Operational amplifier: 555 Timer, PLL
CO-3	Design the Active filters using Operational Amplifier
CO-4	Use the Op-Amp in A to D & D to A Converters
CO-5	Comprehend & differentiate the working principle of various data converters.
III-I Sem	Course: Utilization of Electrical energy
CO-1	Identify various illumination methods produced by different illuminating sources
CO-2	Identify a suitable motor for electric drives and industrial applications
CO-3	Identify most appropriate heating and welding techniques for suitable applications.
CO-4	Distinguish various traction system and determine the tractive effort and specific energy consumption.
CO-5	Validate the necessity and usage of different energy storage schemes for different applications and comparisons.
III-I Sem	Course: Computer Architecture and Organisation
CO-1	Explain the instruction cycle of a computer
CO-2	Understand various micro operations and register transfer language.
CO-3	Describe parallel processing and pipelining
CO-4	Interface different peripherals with processors
CO-5	Know the advantages of cache and virtual memory.
III-I Sem	Course: Optimization Techniques
CO-1	State and formulate the optimization problem without and with constraints, also apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints and arrive at an optimal solution.
CO-2	Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
CO-3	Formulate a mathematical model and apply non-linear programming techniques for unconstrained and constrained case studies.
CO-4	Solve transportation and assignment problem by using Linear programming Simplex method

1

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

CO-5	Formulate and apply Dynamic programming technique to inventory control, production planning, engineering design problems etc. to reach a final optimal solution from the current optimal solution.
	solution nom the current optimal solution.
III-I Sem	Course: Object oriented Programming Through JAVA
CO-1	Discuss and understand java programming constructs, Control structures
CO-2	Illustrate and experiment Object Oriented Concepts like classes, objects
CO-3	Apply Object Oriented Constructs such as Inheritance, interfaces, and exception handling
CO-4	Construct applications using multithreading and I/O
CO-5	Develop Dynamic User Interfaces using applets and Event Handling in java
III-I Sem	Course: Power Electronics Lab
CO-1	Analyse characteristics of various power electronic devices and design firing circuits for SCR.
CO-2	Analyse the performance of single-phase dual, three-phase full-wave bridge converters and dual converter with both resistive and inductive loads.
CO-3	Examine the operation of Single-phase AC voltage regulator and Cycloconverter with resistive and inductive loads.
III-I Sem	Course: Control Systems Lab
CO-1	Analyze the performance and working Magnetic amplifier, D.C and A.C. servo motors and synchronous motors.
CO-2	Design P,PI,PD and PID controllers
CO-3	Design lag, lead and lag-lead compensators
III-II Sem	Course:Microprocessors and Microcontrollers
CO-1	Understand the microprocessor capability in general and explore the evaluation of microprocessors.
CO-2	Understand the addressing modes of microprocessors
CO-3	Understand the micro controller capability
CO-4	Program mp and mc
CO-5	Interface mp and mc with other electronic devices
III-II Sem	Course: Electrical Measurements and Instrumentation

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B+++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

CO-1	Know the construction and working of various types of analog instruments.
CO-2	Describe the construction and working of wattmeter and power factor meters
CO-3	Know the construction and working various bridges for the measurement resistance inductance and capacitance
CO-4	Know the operational concepts of various transducers
CO-5	Know the construction and operation digital meters
III-II Sem	Course:Power System Analysis
CO-1	Draw impedance diagram for a power system network and calculate per unit quantities
CO-2	Apply the load flow solution to a power system using different methods.
CO-3	Form Z bus for a power system networks and analyse the effect of symmetrical faults.
CO-4	Find the sequence components for power system Components and analyse its effects of unsymmetrical faults
CO-5	Analyse the stability concepts of a power system
III-II Sem	Course: Signals and Systems
CO-1	Apply the knowledge of various signals and operations
CO-2	Analyze the spectral characteristics of periodic signals using Fourier Analysis.
CO-3	Classify the systems based on their properties and determine the response of LSI system using convolution.
CO-4	Understand the process of sampling and the effects of under sampling
CO-5	Apply Laplace and z-transforms to analyze signals and Systems (continuous & discrete).
III-II Sem	Course: Electric Drives
CO-1	Explain the fundamentals of electric drive and different electric braking methods
CO-2	Analyze the operation of three-phase converter fed dc motors and four quadrant operations of dc motors using dual converters.
CO-3	Describe the DC-DC converter fed control of dc motors in various quadrants of operation
CO-4	Know the concept of speed control of induction motor by using AC voltage controllers and voltage source inverters and differentiate the stator side control and rotor side control
CO-5	Learn the concepts of speed control of synchronous motor with different methods

2

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B+++" Accredited Institute

III-II Sem	Course: Advanced Control Systems
CO-1	Analyse different canonical forms - solution of State equation
CO-2	Design of control system using the pole placement technique is given after introducing the concept of controllability and observability
CO-3	Analyze nonlinear system using describing function technique and phase plane analysis.
CO-4	Examine the stability analysis using Lyapunov method.
CO-5	Illustrate the Minimization of functional using calculus of variation - state and quadratic regulator problems
III-II Sem	Course: Switch Gear and Protection
CO-1	Illustrate the principles of arc interruption for application to high voltage circuit breakers of air - oil - vacuum - SF6 gas type.
CO-2	Analyse the working principle and operation of different types of electromagnetic protective relays.
CO-3	Acquire knowledge of protective schemes for generator and transformers for different fault conditions.
CO-4	Classify various types of protective schemes used for feeders and bus bar protection and Types of static relays.
CO-5	Analyse the operation of different types of over voltages protective schemes required for insulation co–ordination and types of neutral grounding
III-II Sem	Course: Big data Analytics
CO-1	Understand how to leverage the insights from big data analytics
CO-2	Analyze data by utilizing various statistical and data mining approaches
CO-3	Perform analytics on real-time streaming data
CO-4	Understand the various NoSql alternative database models
CO-5	Design and Implementation of Big Data Analytics using pig and spark to solve data intensive problems and to generate analytics
III-II Sem	Course: Battery Management Systems and charging Stations
CO-1	Describe the construction and operation of different batteries for EV applications
CO-2	Describe charging algorithms of different batteries and balancing methods of battery packs
CO-3	Describe the different kinds of infrastructure needed in the charging stations
CO-4	Describe the requirements of battery management and their maintenance
CO-5	Obtain the modelling of batteries and develop their simulation models

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

III-II Sem	Course: Fundamentals of Utilization of Electrical Energy
CO-1	Know the concepts of illumination and various illumination methods
CO-2	Know about the resistance - induction and dielectric heating.
CO-3	Learn about the resistance and arc welding and welding equipment
CO-4	Know about the mechanisms - equipment and technology used in the electric traction.
CO-5	Differentiate the importance of various energy storage systems
III-II Sem	Course: Electrical Measurements and Instrumentation Lab
CO-1	Know about the phantom loading.
CO-2	Learn the calibration process
CO-3	Measure the electrical parameters voltage - current - power - energy and electrical characteristics of resistance - inductance and capacitance.
III-II Sem	Course: Microprocessors and Microcontrollers Lab
CO-1	Write assembly language program using 8086 micro based on arithmetic, logical, and shift operations
CO-2	Interface 8086 with I/O and other devices
CO-3	Parallel and serial communication using 8051 & PIC 18 micro controllers
III-II Sem	Course: Power Systems and Simulation Lab
CO-1	Estimate the sequence impedances of 3-phase Transformer and Alternators
CO-2	Evaluate the performance of transmission lines
CO-3	Analyse and simulate power flow methods in power systems
IV-I Sem	Course: Digital signal Processing
CO-1	Know the concepts of Digital signal processing - frequency domain representation &z transform.
CO-2	Compute discrete Fourier transform and fast Fourier transforms for different sequences.
CO-3	Design IIR filters through analog filter approximation and basic structure of IIR filters
CO-4	Design FIR filters with window techniques and basic structure of FIR filters
CO-5	Learn the concepts of Multirate Signal Processing.

ſ

AVANTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NA'AC "B++" Accredited Institute

IV-I Sem	Course: Renewable and Distributed Energy Technologies
CO-1	Illustrate basic concepts of renewable and distributed sources
CO-2	Demonstrate the components of wind energy conversion systems.
CO-3	Model PV systems and analyse MPPT Techniques
CO-4	Illustrate the concept of Energy Production from Hydro - Tidal and Geothermal
CO-5	Distinguish between standalone and grid connected DG systems and design hybrid renewable energy systems.
IV-I Sem	Course: Flexible Alternating Current Transmission Systems
CO-1	Know the concepts of facts controller and power flow control in transmission line
CO-2	Demonstrate operation and control of voltage source converter and know the concepts current source converter.
CO-3	Analyse compensation by using different compensators to improve stability and reduce power oscillations in the transmission lines.
CO-4	Know the concepts methods of compensations using series compensators
CO-5	Analyse operation of Unified Power Flow Controller (UPFC) and Interline power flow controller (IPFC).
IV-I Sem	Course: Power system Deregulation
CO-1	Know the essential and operation of deregulated electricity market systems
CO-2	Learn about the different structure model.
CO-3	Analyze various types of electricity market operational and control issues using new mathematical models.
CO-4	Analyse LMP's wheeling transactions and congestion management
CO-5	Analyze impact of ancillary services.
IV-I Sem	Course: Database Management systems
CO-1	Illustrate the concept of databases, database management systems, database languages, database structures and their work
CO-2	Apply ER modeling and Relational modeling for designing simple databases
CO-3	Summarize the concepts related to relational model and SQL and Write database queries using relational algebra and structured query language.
CO-4	Design and develop databases from the real world by applying the concepts of Normalization
CO-5	Outline the issues associated with Transaction Management and Recovery, Tree Structured Indexing

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

IV-I Sem	Course: Hybrid Electric Vehicles
CO-1	Know the concept of electric vehicles and hybrid electric vehicles
CO-2	Familiar with different configuration of hybrid electric vehicles
CO-3	Choose an effective motor for EV and HEV application
CO-4	Understand the power converters used in hybrid electric vehicles
CO-5	Know different batteries and other energy storage systems
IV-I Sem	Course: High voltage Engineering
CO-1	Recognise the dielectric properties of gaseous materials used in HV equipment
CO-2	Differentiate the break down phenomenon in liquid and solid dielectric materials.
CO-3	Acquaint with the techniques of generation of high AC and DC voltages
CO-4	Acquaint with the techniques of generation of high Impulse voltages and currents
CO-5	Getting the knowledge of measurement of high AC - DC - Impulse voltages and currents
IV-I Sem	Course: Programmable Logic Controllers and Applications
CO-1	Illustrate I/O modules of PLC systems and ladder diagrams
CO-2	Demonstrate various types registers and programming instructions.
CO-3	Examine various types of PLC functions and its applications
CO-4	Assess different data handling functions and its applications.
CO-5	Describe the analog operations and PID modules
IV-I Sem	Course: Cloud computing with AWS
CO-1	Understand and analyze the architecture of Cloud
CO-2	Identify and apply deployment and management options of AWS Cloud Architecture
CO-3	Design architectures to decouple infrastructure and reduce interdependencies
CO-4	Analyze various cloud programming models and apply them to solve problems on the cloud.
CO-5	Identify resource management fundamentals, i.e. resource abstraction, sharing and sandboxing and outline their role in managing infrastructure in cloud computing.
	AND ELEVANTERINA

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

IV-I Sem	Course: Deep Learning Techniques
CO-1	Demonstrate the fundamental concepts learning techniques of Artificial Intelligence, Machine Learning and Deep Learning
CO-2	Discuss the Neural Network training, various random models.
CO-3	Explain the Techniques of Keras, TensorFlow, Theano and CNTK
CO-4	Classify the Concepts of CNN and RNN
CO-5	Implement Interactive Applications of Deep Learning
IV-I Sem	Course: Power System Operation and Control
CO-1	Compute optimal load scheduling of Generators
CO-2	Formulate hydrothermal scheduling and unit commitment problem
CO-3	Analyse effect of Load Frequency Control for single area systems
CO-4	Analyse effect of Load Frequency Control for two area systems
CO=5	Describe the effect of reactive power control for transmission lines
IV-I Sem	Course: Switched Mode Power Conversion
CO-1	Design and analyse the operation of non-isolated switch mode converters
CO-2	Analyze the operation of isolated switch mode converters.
CO-3	Illustrate the operation of resonant converters
CO-4	Analyse the control schemes of converters and design transformer and inductor.
CO-5	Model the converters and design controller for closed loop operation
IV-I Sem	Course: AI Applications of Electrical engineering
CO-1	Analyse different models of artificial neuron & Use learning methods of ANN.
CO-2	Evaluate different paradigms of ANN.
CO-3	Classify between classical and fuzzy sets
CO-4	Illustrate different modules of Fuzzy logic controller.
CO-5	Apply Neural Networks and fuzzy logic for real-time applications
IV-I Sem	Course: Data Science
CO-1	Acquire the knowledge and expertise to become a proficient data scientist

1 1 2 8

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

Cherukupally (Village), Near Tagarapuvalasa Bridge, Vizianagaram (Dist) -531162. www.aietta.ac.in, principal@aietta.ac.in

CO-2	Demonstrate an understanding of statistics and machine learning concepts that are vital for data science
CO-3	Explain how data is collected, managed and stored for data science
CO-4	Interpret the key concepts in data science, including their real-world applications and the toolkit used by data scientists
CO-5	Illustrate data collection and management scripts using MongoDB
IV-II Sem	Course: Fundamentals of Electric Vehicles
CO-1	Illustrate different types of electric vehicles.
CO-2	Select suitable power converters for EV applications
CO-3	Design HEV configuration for a specific application
CO-4	Choose an effective method for EV and HEV applications
CO-5	Analyse a battery management system for EV and HEV.
IV-II Sem	Course: Concepts of Internet of Things
CO-1	Review Internet of Things (IoT).
CO-2	Demonstrate various business models relevant to IoT
CO-3	Construct designs for web connectivity
CO-4	Organize sources of data acquisition related to IoT, integrate to enterprise systems
CO-5	Describe IoT with Cloud technologies.
IV-II Sem	Course: Cocepts of Power System Engineering
CO-1	Know the concepts of power generation by various types of power plants.
CO-2	Learn about transmission line concepts and distribution systems schemes.
CO-3	Learn about protection equipments and grounding methods of power system
CO-4	Know the economic aspects of electrical energy and their importance.
CO-5	Know the importance of power factor improvement and voltage control in power systems.
IV-II Sem	Course:Concepts of Smart Grid Technologies
CO-1	Know the concepts of smart grids and analyse the smart grid policies and developments in smart grids.

(Approved by A.I.C.T.E., New Delhi, & Permanently Affiliated to J.N.T.U-GV, Vizianagaram)

NAAC "B++" Accredited Institute

CO-3	Know the concepts of smart substations - feeder automation - Battery Energy storage systems etc
CO-4	Analyse micro grids and distributed generation systems
CO-5	Analyse the effect of power quality in smart grid and to understand latest developments in ICT for smart grid.
IV Sem -II	Project
CO-1	Formulate., and apply mathematical, science and engineering principles to solve real time engineering problems
CO-2	Test the existing data, communicate and conduct research on complex problems using modern tools
CO-3	Validate the obtained results on contemprory issues related to society and environment
CO-4	Determine effectively the engineering principles used intheir project individually and as a team as per the norms of engineering practice
CO-5	Structure future work to promote life long learning in the context of technological adaptation.

